Copula-based bivariate finite mixture regression models with an application for insurance claim count data
نویسندگان
چکیده
Abstract Modeling bivariate (or multivariate) count data has received increased interest in recent years. The aim is to model the number of different but correlated counts taking into account covariate information. Bivariate Poisson regression models based on shock approach are widely used because their simple form and interpretation. However, these do not allow for overdispersion or negative correlation, thus, other have been proposed literature avoid limitations. present paper proposes copula-based finite mixture models. These offer some advantages since they all benefits a mixture, allowing unobserved heterogeneity clustering effects, while derivation can produce more flexible structures, including correlations regressors. In this paper, new defined, estimation through an EM algorithm presented, then applied Spanish insurance claim database.
منابع مشابه
A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking
Bivariate Poisson regression models for ratemaking in car insurance has been previously used. They included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. These models are now revisited in order to consider alternatives. A 2-finite mixture of bivariate Poisson regression models is used to demonstrate that the overdispersion in the data requires m...
متن کاملEstimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملGeneralized bivariate count data regression models
This paper proposes a flexible bivariate count data regression model that nests the bivariate negative binomial regression. An application to the demand for health services is given. 2000 Elsevier Science S.A. All rights reserved.
متن کاملCopula bivariate probit models: with an application to medical expenditures.
The bivariate probit model is frequently used for estimating the effect of an endogenous binary regressor (the 'treatment') on a binary health outcome variable. This paper discusses simple modifications that maintain the probit assumption for the marginal distributions while introducing non-normal dependence using copulas. In an application of the copula bivariate probit model to the effect of ...
متن کاملthe application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)
هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Test
سال: 2022
ISSN: ['0193-4120']
DOI: https://doi.org/10.1007/s11749-022-00814-1